Solid State I

PHYS8761, Fall 2019

Instructor: Fazel Tafti, Higgins 330A, fazel.tafti@bc.edu Class: T/R, 9 AM, Higgins 263 Office hours: By appointment Grader: Hong Pan, hongpb@bc.edu Website: Canvas

I. Rationale and Goals

This course will use the principles of condensed matter physics to solve several fundamental problems including electronic band structure, phonon dispersions, and transport of charge and heat in solids.

II. Course Readings

Required text: "Solid State Physics" by Aschroft and Mermin

III. Canvas (course website)

All information for the course including announcements, discussions, up to date syllabus, assignments and grade will be posted at the Canvas course website.

IV. Communication Policy

A. QUESTIONS THAT APPLY ONLY TO YOU: These should be sent directly to my email address (fazel.tafti@bc.edu) and identify the course at the beginning of your subject: "PHYS4401: question about an error in the score of my exam".

B. GENERAL QUESTIONS: Should be asked in the class or posted to the discussion boards on Canvas for all to see. They will ONLY be answered there. These can be in regards to material covered in class, homework, tests, scheduling, etc. Feel free to answer each other's questions (Extra Credit).

C. ANNOUNCEMENTS: Class announcements (change in schedule, assignments, etc.) will be made via Canvas and email, please ensure your email is accurate there.

V. Academic Integrity

You are encouraged to discuss concepts, and solve problems together. This will help you to discern what you do not understand and practice a fundamental tool for physicists: collaboration. Nonetheless, to respect the achievements of all students, you are expected to submit work performed only by you, and will disciplined for violations of the BC guidelines on academic integrity (www.bc.edu/integrity). **Cheating on any tests will result in a Zero.**

VI. Course Outline

Section	Contents	Lectures Weeks		Homework	
Drude Model	DC electrical conductivity	2	1	1	
	Hall effect and Magnetoresistance				
	AC electrical conductivity				
	Thermal conductivity				
Sommerfeld	Ground state of and electron gas	2	2 1		
Theory	Specific heat				
Crystalline	Bravais lattice	2	3 1		
Lattice	Unit cell: primitive, conventional, and				
	Wigner-Seitz				
	Close packing, fcc, and hcp				
Reciprocal Lattice	Brillouin zone	2	4	1	
	Miller indices				
Electrons in a	Bloch theorem	em 4 5-6 1			
Periodic	Fermi surface				
Potential	Density of states				
Weak Periodic	Schrodinger solution 3 7-8 1		1		
Potential	Proximity to a Bragg plane				
	1D and 3D bands				
	Brillouin zones				
Tight-Binding	Formulation of TB	2	9	1	
Method	s- and p-bands				
	Wannier functions				
Classical Theory	Harmonic approximation	3 10-11 1			
of Phonons	Adiabatic approximation				
	Specific heat				
	Normal modes in 1D and 3D				
Quantum Theory	High and low temperature limits	low temperature limits312-131		1	
of Phonons	Mid temperatures				
	Einstein and Debye models				
	Phonon density of states				
Semiclassical	Crystal vs. real momentum 4		14-15	1	
Model	Holes vs. electrons				
	Effective mass				
	Landau orbits and high fields				
Semiclassical	Relaxation-time approximation	approximation 4 16-17 1		1	
theory of	Non-equilibrium distribution				
conduction	DC and AC electrical conductivity				
	Thermal conductivity				
	Seebeck and Nernst effects				

VII. Evaluation (Scored out of 100%)

Homework (11)	50%	Each homework will have a deadline. For each day of late submission,	
		33% of the grade will be removed.	
Final	50%	TBD (the usual class location and time)	

VIII. Missed Final

Students who miss the final will automatically receive 0% unless it is caused by extreme circumstances. A makeup exam will only be offered if you have a **signed letter from the dean** explaining the circumstances. Note that you still must inform me of the reason for missing the exam **AHEAD OF TIME.**

IX. Accommodations:

If you are a student seeking reasonable accommodations in this course, please contact Kathy Duggan, (617) 552-8093, dugganka@bc.edu, at the Connors Family Learning Center regarding learning disabilities and ADHD, or Paulette Durrett, (617) 552-3470, paulette.durrett@bc.edu, in the Disability Services Office regarding all other types of disabilities, including temporary ones. Advance notice and documentation are required for accommodations.